Dave Cromley, November 2011
Notation: To keep the expressions less intimidating:
An angle around the x axis is x instead of ax. δx is a small angle.
$\operatorname{COS}(x)$ is Cx; SIN(x) is Sx; TAN(x) is Tx.
Dydx is the partial derivative of y with respect to (a rotation by) δx.
We start with [m], the matrix from the Euler or
$\begin{array}{llll}{\left[\begin{array}{ll}+C y C z & +C x S z+S x S y C z\end{array}\right.} & +S x S z-C x S y C z &] \\ {\left[\begin{array}{ll}-C y S z & +C x C z-S x S y S z\end{array}\right.} & +S x C z+C x S y S z &] \\ {\left[\begin{array}{ll}\text { +Sy } & -S x C y\end{array}\right.} & +C x C y &]\end{array}$
(See http://en.wikipedia.org/wiki/Euler_angles)
[δm] is the matrix of an incremental rotation by angle (e.g.) δx.
$\left[\begin{array}{lllll}1 & 0 & 0 &]\end{array}\right]$
$\left[\begin{array}{llll}0 & C \delta x & S \delta x\end{array}\right]$
[0 -Sठx C δx]
Since δx is small, we can use:
$\left[\begin{array}{lllll}1 & 0 & 0 & \text {] }\end{array}\right.$
$\left[\begin{array}{llll}{[0} & 1 & \delta x &]\end{array}\right.$
$\left[\begin{array}{llll}0 & -\delta x & 1 &]\end{array}\right.$
[m'] is the matrix of the resulting Euler orientation (x', y', z'). The objective is to find x^{\prime}, y^{\prime}, and z^{\prime}.

We do the following for each of $\delta x, \delta y$, and δz
START process A; use δx e.g.:
We get the difference matrix [dm]
$[\mathrm{dm}]=\left[\mathrm{m}^{\prime}\right]-[\mathrm{m}]=[\mathrm{m}][\delta \mathrm{m}]-[\mathrm{m}]=[\mathrm{m}]([\delta \mathrm{m}]-\mathrm{I})$
We get 9 equations from the 9 elements of [m] and [dm]:
$\partial m i j \partial x^{*} D x d x+\partial m i j \partial y * D y d x+\partial m i j \partial z * D z d x=d m i j$
With these 9 equations in 3 unknowns, we can get Dxdx, Dydx, and Dzdx.
By choosing the best mij and dmij, the computations are not difficult.
END process A
Having all 9 partial derivitives, we have
$x^{\prime}=x+D x d x * \delta x+D x d y * \delta y+D x d z \star \delta z$
$y^{\prime}=y+$ Dydx* $\delta x+$ Dydy* $\delta y+D y d z * \delta z$
$y^{\prime}=z+D z d x * \delta x+D z d y * \delta y+D z d z * \delta z$
---- Apply δx rotation to get Dxdx, Dydx, Dzdx ------------------------1
-- [ठx]-I matrix
[$\left.\begin{array}{llll}0 & 0 & 0\end{array}\right]$
[$00008 x]$
$\left[\begin{array}{llll}0 & -\delta x & 0\end{array}\right]$
$--\quad[m]([\delta x]-I)$
$\left[\begin{array}{ll}{[} & 0 \\ {[}\end{array}\right.$
[$0 \quad-\mathrm{SxCz}-\mathrm{CxSySz}+\mathrm{CxCz-SxSySz}]$
$\left[\begin{array}{lll}0 & -C x C y & -S x C y\end{array}\right]$
m31: +CyDydx $=0$
Dydx $=0$
m11: -SyCzDydx -CySzDzdx $=0$

- CySzDzdx $=0$

Dzdx $=0$
m33: -SxCyDxdx -CxSyDydx $=-$ SxCy
$-S x C x C y D x d x=-S x C x C y$
Dxdx $=1$

```
---- Apply \deltay rotation to get Dxdy, Dydy, Dzdy -------------------
-- [\deltay]-I matrix
[ 0 0 -\deltay ]
[ 0 0 0 0 ]
[ \deltay 0 0 0 ]
-- [m]([\deltay]-I)
[ +SxSz-CxSyCz 0 -CyCz ]
[ +SxCz+CxSySz 0 +CySz ]
[ +CxCy 0 -Sy ]
m31: CyDydy = +CxCy
    Dydy = Cx
m11: -SyCzDydy -CySzDzdy = +SxSz -CxSyCz
    -CxSyCz -CySzDzdy = +SxSz -CxSyCz
    -CySzDzdy = +SxSz -CxSyCz +CxSyCz
    Dzdy = -Sx/Cy
m33: -SxCyDxdy -CxSyDydy = -Sy
    -SxCyDxdy -CxCxSy = -Sy
    -SxCyDxdy = -Sy +CxCxSy
    -SxCyDxdy = -SxSxSy
    Dxdy = SxTy
---- Apply \deltaz rotation to get Dxdz, Dydz, Dzdz --------------------
-- [\deltaz]-I matrix
[ 0 \deltaz 0 ]
[-\deltaz
[ 0 0 0 0 ]
-- [m]([\deltaz]-I)
[ -CxSz-SxSyCz +CyCz 0 ]
[ -CxCz+SxSySz -CySz 0
[ +SxCy +Sy 0 ]
m31: CyDydz = +SxCy
    Dydz = +Sx
m11: -SyCzDydz -CySzDzdz = -CxSz-SxSyCz
    -CySzDzdz = -CxSz-SxSyCz
    -CySzDzdz = -CxSz +SxSyCz +SxSyCz
    +CyDzdz = +Cx
    Dzdz = +Cx/Cy
m33: -SxCyDxdz -CxSyDydz = 0
    -SxCyDxdz -SxCxSy = 0
    +CyDxdz = -CxSy
    Dxdz = -CxTy
```

---- Combine the 9 results ----------------------1

Dxdx $=1$
Dydx $=0$
Dzdx $=0$
Dxdy $=+$ SxTy
Dydy $=+C x$
Dzdy $=-$ Sx/Cy
Dxdz $=-\mathrm{CxTy}$
Dydz $=+$ Sx
Dzdz $=+C x / C y$
$x^{\prime}=x+\delta x \quad 1+\delta y$ SxTy $-\delta z$ CxTy
$y^{\prime}=y+\delta x 0+\delta y C x \quad+\delta z S x$
$z^{\prime}=z+\delta x \quad 0-\delta y$ Sx/Cy + $\delta z C x / C y$

I was unable to begin the computations for this until I stumbled across Jed
Margolin's "Euler Angle Functions". His results didn't work for me, forcing me to do this paper.
http://www.jmargolin.com/uvmath/euler.doc
The desire to do this in the first place comes from the existance of the "passionate" programmers at thinBasic.com and the amazing product (it's free) and the active forum. The features of thinBasic seem innumerable. And the interests of the forum community are innumerable.
http://thinbasic.com
My thinBasic demo program using these results is at
http://dbarc.net/dcgimbalrock.exe
This paper resides at
http://dbarc.net/dceulerrot.pdf

